

What is up with increasing

Female Death Loss?

What are you going to do about it?

Presenter: Ron Ketchem
Swine Management Services, LLC
Presentation: 8-24-2017

Swine Management Services, LLC

1044 W. 23rd St. - Suite B

Fremont, NE 68025

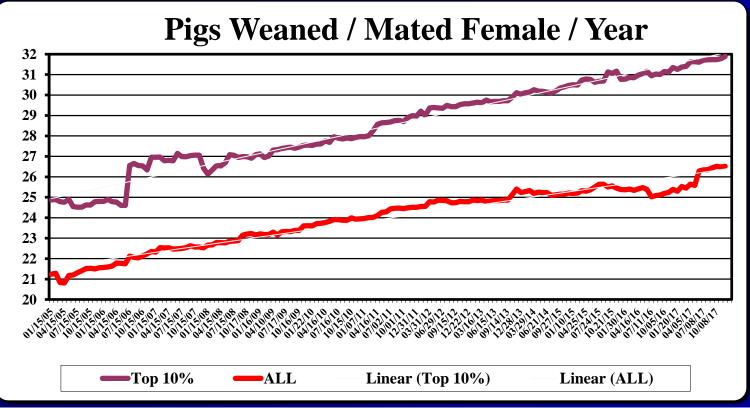
Tel: (402) 727-6600

Website: www.swinems.com

E-mail: Ron.Ketchem@swinems.com

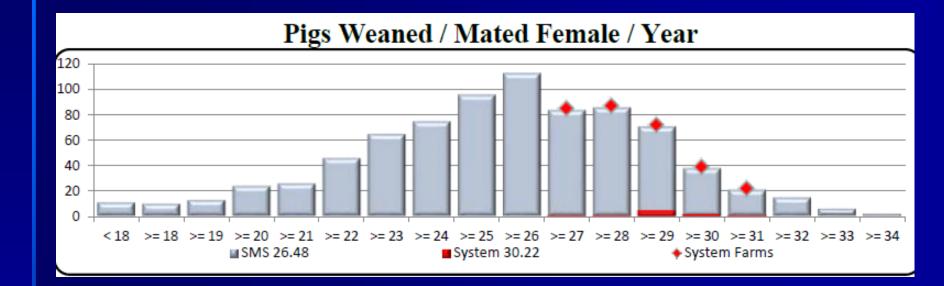
E-mail: Mark.Rix@swinems.com

E-mail: Valerie.Duttlinger@swinems.com

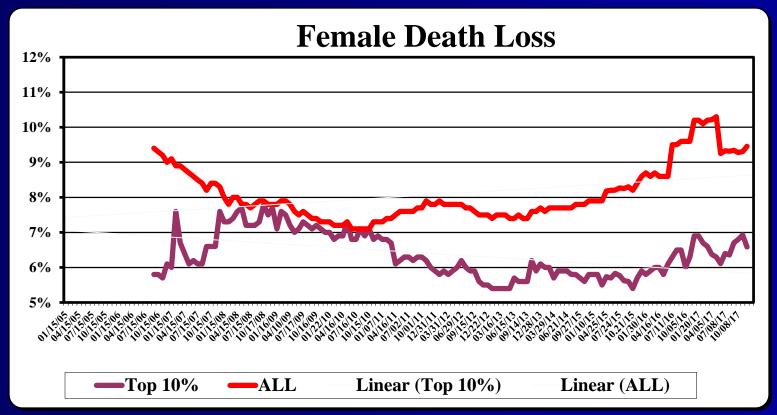

What type data makes up the SMS data base?

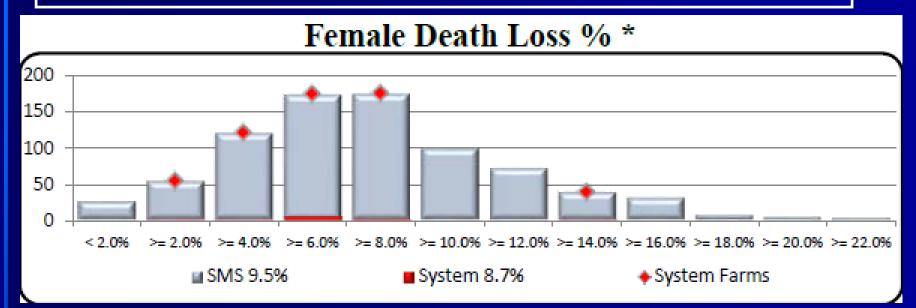
- Data from most major Genetic Companies
- Farms in US and Canada (China and Philippines)
- Stared in 2005
- Farms size 125 to 11,000+ sows
- 900+ Farms with 1.6+ million sows (average 1,700+ sows)
- Mostly independent pork producers
- 11+ different Genetic companies
- 6 Genetic Companies with 50+ farms

13 Year Trend line In the SMS Data Set



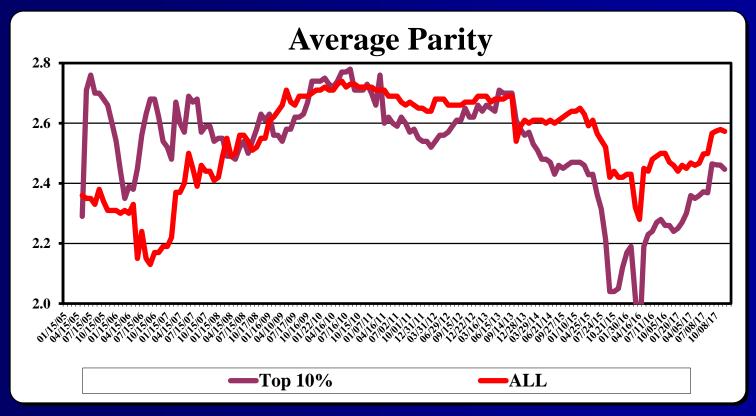
		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Diff
1	L 0 %	24.72	25.67	26.92	26.77	27.33	27.80	28.60	29.29	30.12	30.47	30.77	31.25	31.73	+7.01
A	All	21.28	21.92	22.52	22.94	23.33	23.84	24.31	24.75	25.26	25.21	25.40	25.33	26.44	+5.16


Distribution of SMS data Base


13 Year Trend line In the SMS Data Set

	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Diff
10%	NA	5.9%	6.6%	7.4%	7.2%	6.9%	6.3%	5.8%	6.1%	5.8%	5.9%	7.0%	6.8	-0.90
All	NA	9.2%	8.6%	7.9%	7.6%	7.2%	7.6%	7.7%	7.6%	7.9%	8.6%	10.2	9.4	+0.2

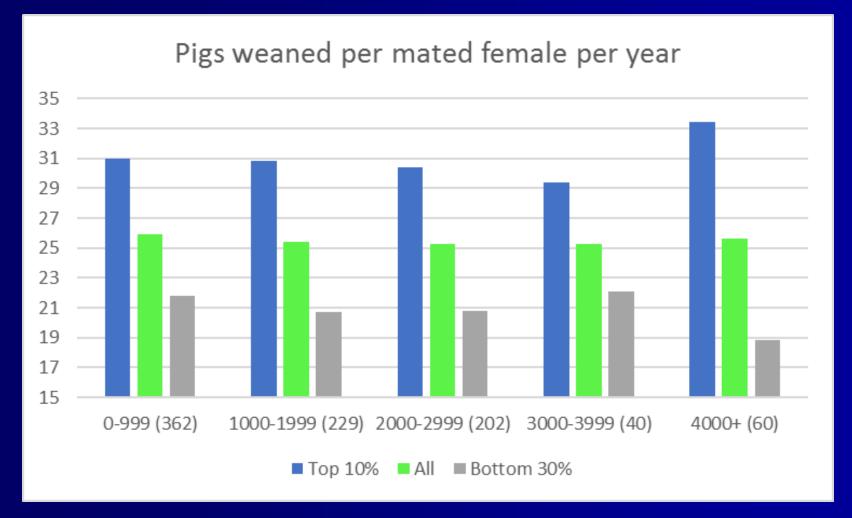
52 Weeks Distribution in SMS Data Set



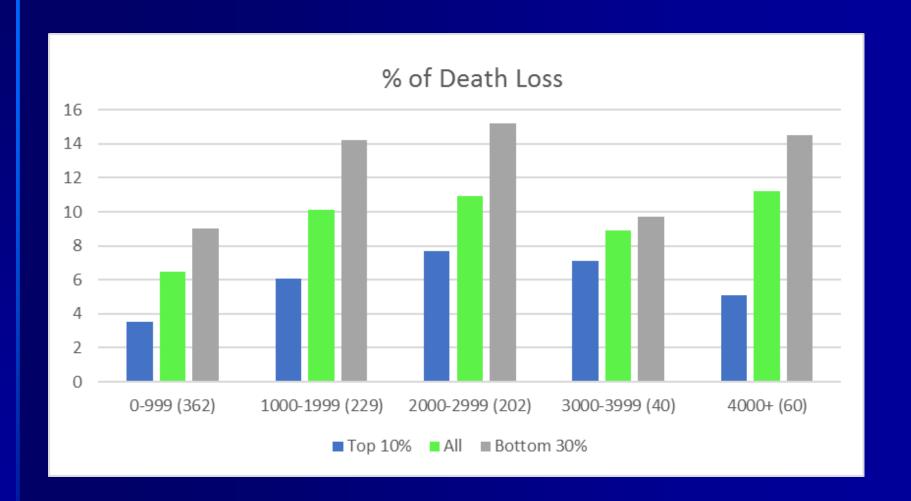
- 23% of sows farms had female death loss of 12+%
- For each 1% change in females death loss pigs weaned per mated female changes by 0.25 pigs. Example: 4% = 1 pig per sow

13 Year Trend line In the SMS Data Set

		2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Diff
	10%	2.64	2.52	2.60	2.54	2.62	2.74	2.61	2.58	2.57	2.48	2.40	2.25	2.46	-0.18
ı	All	2.34	2.23	2.39	2.52	2.67	2.72	2.68	2.66	2.60	2.64	2.60	2.44	2.56	+0.2

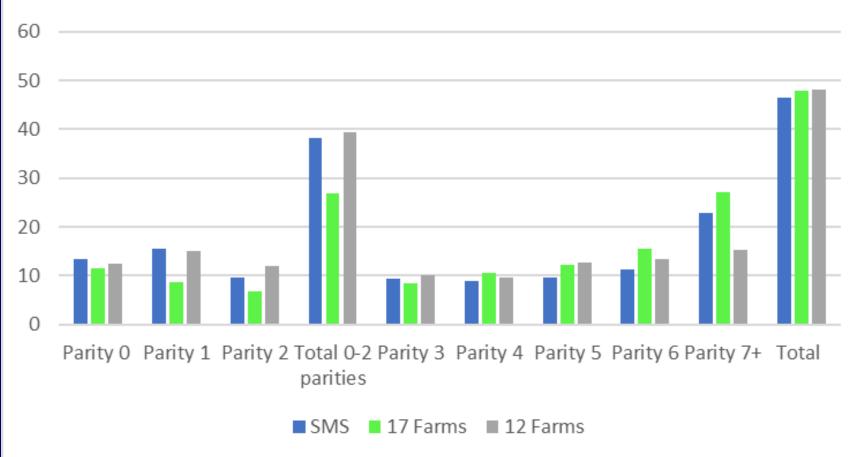

Breakout of SMS Data Set by Size of Farm: data from 804 farms with 1,473,762 mated females-ending 2017

Farm Size	No. farms	No. Sows	PW/MF/Yr			Female Culls %			Female Deaths %		
			10%	All	30%	10%	All	30%	10%	All	30%
0-999	295	167,692	31.2	26.0	22.0	63.0	44.8	41.8	6.4	8.0	8.9
1000-1999	204	276,440	31.0	26.0	22.1	48.1	46.7	50.0	6.0	8.9	11.1
2000-2999	186	472.382	30.8	25.9	22.1	48.6	46.7	42.4	7.3	9.9	12.7
3000-3999	47	155,779	29.9	26.4	23.8	45.3	44.6	47.2	7.3	9.5	12.1
4000+	62	350,531	33.3	28.0	23.6	63.6	48.6	46.3	4.8	9.8	11.8

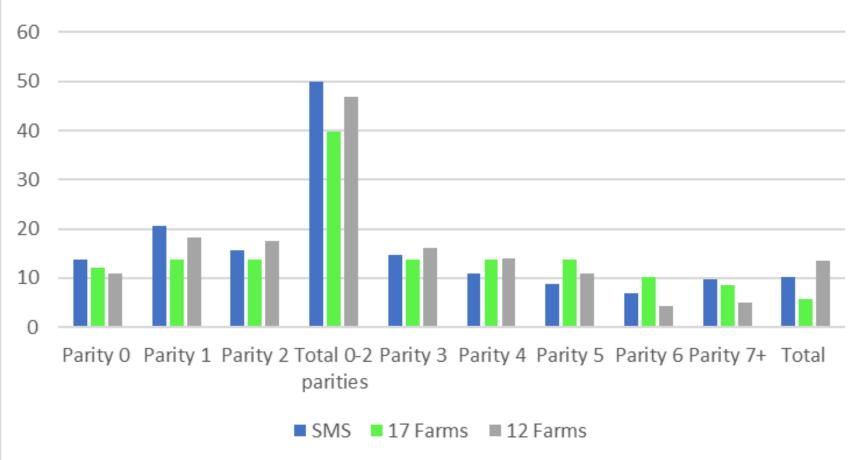

Breakout of SMS Data by Size of Farm-804 farms

Breakout of SMS Data by Size of Farm-804 farms

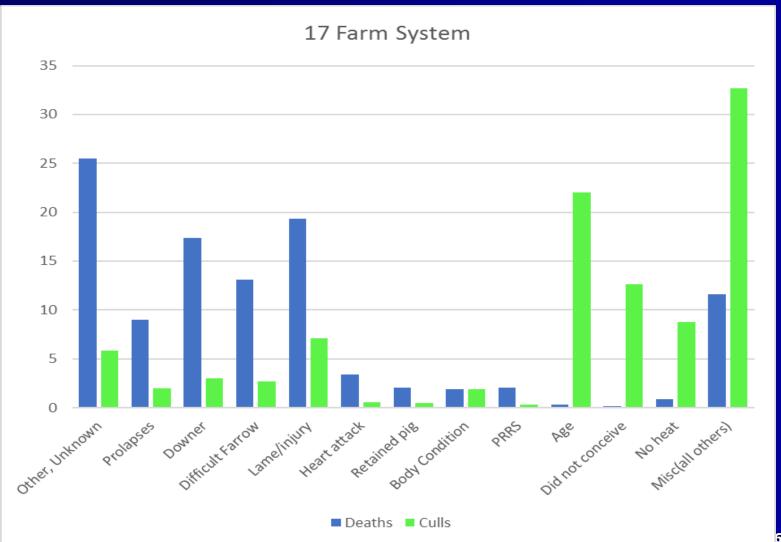
Culling and Death loss % by Parity -


	Parity 0	Parity 1	Parity 2	Total 3 parity	Parity 3	Parity 4	Parity 5	Parity 6	Parity 7+	Total
SMS-culls- 893 farms	13.3	15.5	9.5	38.3	9.3	8.8	9.7	11.2	22.8	46.4
17 individual farms-cull	11.5	8.6	6.7	26.8	8.4	10.5	12.1	15.5	27.2	47.8
12 farms in system-cull	12.5	15.0	11.9	39.4	10.0	9.6	12.7	13.3	15.2	48.1
SMS-deaths- 893 farms	13.7	20.6	15.7	50.0	14.7	10.8	8.8	6.9	9.8	10.2
17 individual farms-deaths	12.1	13.8	13.8	39.7	13.8	13.8	13.8	10.3	8.6	5.8
12 farms in system-deaths	11.0	18.3	17.6	46.9	16.1	13.9	11.0	4.4	5.1	13.6

Culling and Death loss % by Parity



Culling and Death loss % by Parity


Breakout of SMS Data-3 years 17 farms

Reason- Individual farms	arms 8275 hd. rea		reas			oined 135 hd.	Culls-65 reasons 48,675 hd.		Total- 58,610 hd.
	#	%	#	%	#	%	#	%	%
Other, Unknown	2411	29.1	119	7.17	2530	25.5	911	1.87	5.87
Prolapses	717	8.66	175	10.5	892	8.98	248	0.50	1.95
Downer	1258	15.2	466	30.1	1724	17.4	32	0.07	3.00
Difficult Farrow	1253	15.1	47	2.83	1300	13.1	271	0.56	2.68
Lame/injury	625	7.55	655	39.5	1280	19.3	2896	5.95	7.12
Heart attack	341	4.12	-	0.00	341	3.43	4	0.01	0.59
Retained pig	196	2.37	10	0.60	206	2.07	92	0.19	0.51
Body Condition	117	1.41	72	4.34	189	1.90	910	1.87	1.88
PRRS	167	2.02	35	2.10	202	2.03	1	0.01	0.35
Age	27	0.33	3	0.18	30	0.30	12875	26.5	22.0
Did not conceive	10	0.12	4	0.24	14	0.14	7399	15.2	12.6
No heat	84	1.00	-	0.00	84	0.85	5041	10.4	8.74
Misc(all others)	1080	13.1	74	4.46	1154	11.6	17995	36.9	32.7

Breakout of SMS Data-3 years 17 farms

Industry needs to Standardize Death Loss and Culling Reasons

- -How can the industry work together if there is such a large variation in reasons?
- -One system had 189 different reasons for Culling and Deaths

No heat	Age	Difficult farrowing	Retained pigs	Abortion	Repeat service
Did not conceive	Discharge	Lame/Injury	Udder trauma	Poor milker	Disease
Body condition	Downer	Mastitis/ metritis	Ulcers	Low wean	Unknown
Low born live	Prolapse	Off feed	Unsound	Not in pig/PCN	Other

REMOVAL REASONS

Disease/Health

Discharge (C)

Downer (E)

Disease (C,D,E)

Mastits/Metritis (C)

Reproduction

No Heat (C)

Not in Pig/ Preg Check Neg (C)

Abortion (C)

Repeat Service (C)

Vaginal/Uterine Prolapse (D, E)

Rectal/Anal Prolapse (D, E)

Difficult Farrowing (C, D, E)

Performance

Age (C)

Low Total Born (C)

Retained Pig (C,D,E)

Low Weaned (C)

Poor Milker (C)

Intestinal

Ulcer (C,D,E)

Off Feed (C)

Locomotion

Unsound (C)
Lame/Injured (C,D,E)

Other

Transfer (C)

Other (C,D,E)

Trauma (C,D,E)

Reason type: C= cull, D= Death, E= Euthanized

Type	Reason	Definition
Any	Difficult/ Prolonged Farrowing	A sow that struggles with the farrowing process, may have multiple stillborns or just require a lot of assistance.
Any	Disease	An animal that is culled or died because of a disease, including but not limited to PRRS, Flu, and PEDv.
Any	Lame/Injured	An animal that is visibly lame or has been injured causing difficulty in moving
Any	Rectal/ Anal Prolapse	A female that has either a rectal or anal prolapse.
Any	Retained Pig	A sow that retained a pig after farrowing the litter and later passes it.
Any	Trauma/Injury	An animal that has suffered an injury or trauma and needs to be removed from the herd but doesn't affect soundness
Any	Ulcer	An animal that has an ulcer, signs include pale skin, not eating, vomiting, and passing digested blood.
Any	Unknown	An animal that is removed from the herd for an unknown reason.
Any	Vaginal/Uterine Prolapse	A female that has either a vaginal or uterine prolapse.
Cull	Abortion	A female that pregnancy checks positive but loses her litter prior to 112 days bred that is not the result of a PRRS break.
Cull	Age	A P6+ sow that is culled because of age but not because of performance or soundness.
Cull	Discharge	A female that has discharge from the vulva due to infection
Cull	Low Total Born	A sow that has either a low total born litter or a history of low total born.
Cull	Low Weaned	A sow that weans a low number of pigs
Cull	Mastitis/Metritis	A sow with infection of the mammary glands (mastitis) or the uterus (metritis), the two are often present together.
Cull	No Heat	A female that doesn't display standing heat
Cull	Not in Pig/ PCN	A female that pregnancy checks negative or is found open in gestation but not in standing heat
Cull	Off Feed	An animal that is not eating but isn't lame, injured or diseased.
Cull	Poor Milker	A sow that doesn't milk a litter well, not just because of one poor quality pig.
Cull	Repeat Service	A female the returns to estrus after an unsuccessful mating and is removed from the herd due to that.
Cull	Transfer	An animal that is removed from the unit and moved to another unit.
Cull	Unsound	An animal that isn't lame or injured but is likely to become so if not culled.
Death or Euthanized	Downer	A female that is unable to get up and is not in good enough condition to make a cull truck but isn't lame

Summary for what the data says?

- No standardization of reasons for female removals so hard to analyze and compare farms
- Top 10% of farms by size have lower female death loss
- Sow farms 2000-3999 have higher female culling and death loss
- Data shows higher deaths and culls for younger parity females (0-2)
- A high % of females culls and deaths are unknown
- Industry seeing increase in prolapses
- Data showing increase in females being culled and euthanized do to feet and leg injury and structural unsoundness

What is the National Pork Board doing?

- July 2017: Chris Hostetler Director of Animal Science announced Animal Science Committee directed \$800,000 to Focus on System – wide mortality including loss of sows prior to farrowing
- Committee formed called: Pig Loss Mitigation
- Members: Jeremy Pittman, Steve Kitt, John Deen, Mark Fitzsimmons, Gene Gourley, Kent Stalder, Kent Schwartz, Valerie Duttlinger, and Jer Geiger
- Purpose of group:
 - -Identify specific components of pig mortality that need to/can be addressed by research
 - -Develop researchable questions/research priorities around those components
 - -first project: Pelvic Organ Prolapse-lowa state

Sow Prolapse Syndrome

JEREMY S PITTMAN, DVM, MS, DABVP
SMITHFIELD HOG PRODUCTION DIVISION
NORTH REGION
WAVERLY, VIRGINIA

Emily Mahan-Riggs

NCSU CVM Class of 2017

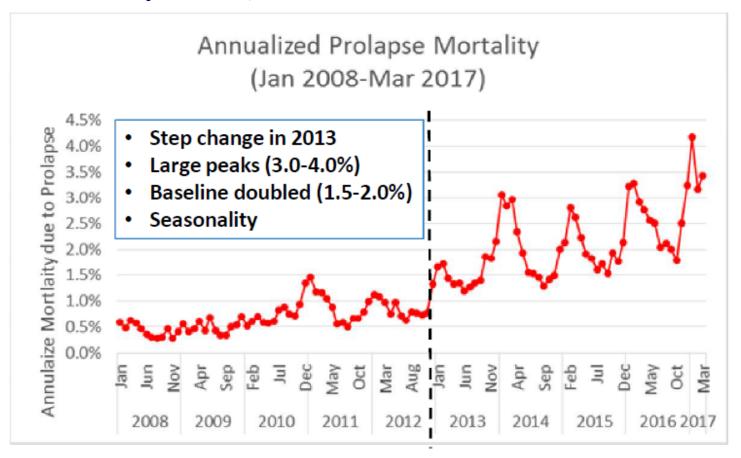
Jamie Madigan

NCSU CVM Class of 2021

DSM Pork Nexus May 18th, 2017 Raleigh, North Carolina

Jeremy Pitman, DVM Smithfield North Division

Data Analysis - Mining


- North Region = ~105,000 inventoried sows on 36 farms
- Data Extraction: PigKnows Record System
- Sow Removal Records from Jan 1st, 2008 March 31st, 2017
- > Filtered for Death, Destroyed and Culled with Removal Reason Given
- > 523,525 individual complete sow records
- > 15,178 (2.90%) Prolapses (Rectal, Uterine, Vaginal)
- Prolapses calculated as annualized rate, similar to sow mortality

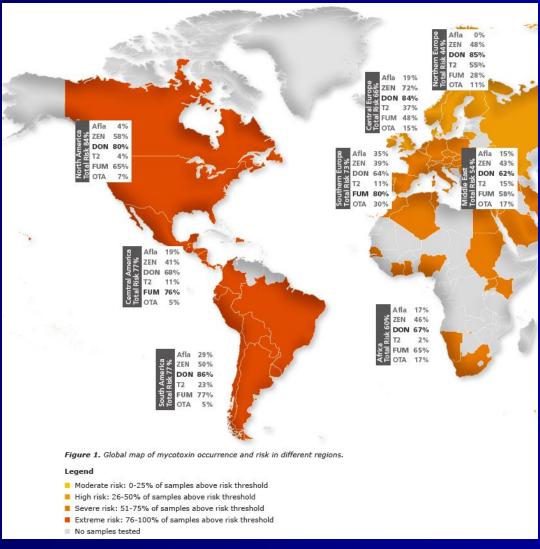
DSM Pork Nexus May 18th, 2017 Raleigh, North Carolina

Jeremy Pitman, DVM Smithfield North Division

DSM Pork Nexus May 18th, 2017 Raleigh, North Carolina

Reasons for Prolapse

- **■** Mycotoxins in feed: (Zearalenone) are you testing corn, etc.
- Hypocalcaemia: dysfunction in calcium metabolism, dietary calcium levels, or calcium-phosphorous imbalance
- Abdominal issues: intake in lactation, grid size, alternative ingredients, etc.
- High-density diets: high in starch and lysine
- Vitamin deficiency: lower levels of vitamin E, or vitamin D are associated with weakness of the pelvic floor muscles
- **■** Genetics: seem more in the pure bred lines



Reasons for Prolapse (continued)

- Constipation: lack of water and low fiber diets
- Parity: may be more in older sows that have lost muscle tone in uterus
- Housing: may be associated to sows in crate gestation?
- Oxytocin and assisted farrowing: over use of Oxytocin-sleeving
- Tail docking: cutting tails to short on replacement gilts which weakens/damages anal sphincter
- Larger litters: larger litter taking longer to farrow or larger pigs at birth

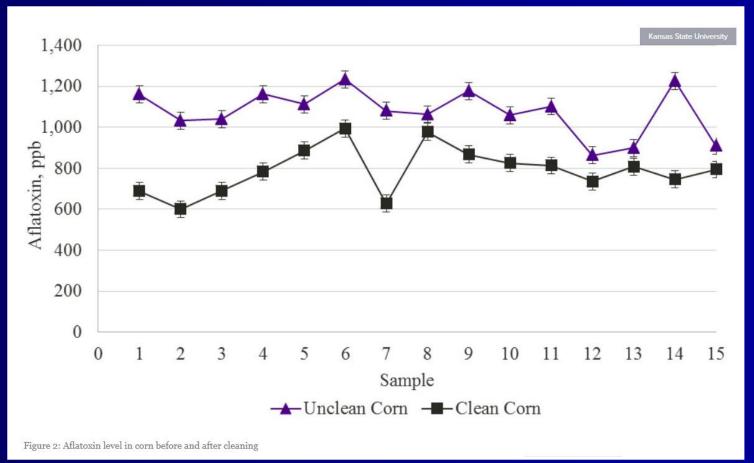
Mycotoxins a World Wide Problem!

<i>M</i> aximu	m Tolerable Level of Mycotoxi	ns Commonly Found in Swine Feeds*
Mycotoxin	Maximum tolerable level	Comments
Aflatoxins (B1, B2, G1,	<20 ppb for human use, dairy feed,	Carcinogenic. Immunosuppressant. Acute signs: anorexia,
G2)	feed for immature animals	depression, ataxia, epistasis. Chronic signs: reduced feed
	<100 ppb for breeding swine	efficiency, reduced milk production, icterus, and decreased
		appetite.
Zearalenone	<1 ppm for younger growing pigs	Estrogenic effects. Swollen vulvas, vaginal or rectal
	<2 ppm for breeding herd	prolapses in prepubertal gilts. Enlarged uterus, swollen or
	<3 ppm for finishing pigs and	twisted uterus, shrunken ovaries. In boars, testes atrophy,
	younger and older boars	enlarged mammary glands, decreased fertility.
Deoxynivalenol	<5 ppm on grain and grain by-	Reduction in feed consumption and weight gain are
(Vomitoxin)	products. DON contaminated	inversely proportional to concentration of DON. High
	feedstuffs should not exceed 20% of	concentrations cause feed refusal and vomiting.
	the diet (<1 ppm in complete feeds)	
T-2 toxin	<1 ppm	Potent immunosuppressive agent that directly affects
		immune cells and modifies immune response as a
		consequence of other tissue damage. Frequent defecation,
		vomiting, weight loss and feed refusal.
Fumonisin	Not established	Carcinogenic in laboratory tests using rat. Associated with
	< 5 ppm (extrapolated from horse	pulmonary edema in pigs
	data)	
Ochratoxin	< 200 ppb has been associated with	Ochratoxin A is most common and potent. Reduction in
	kidney damage in swine	growth, feed efficiency, increasing mortality, liver and
		kidney damage
Ergot	< 200 ppb	Vertigo, staggers, convulsions, temporary posterior
		paralysis, eventual death. Decreased peripheral blood
		supply. Reduced growth, tail loss, reduced reproductive
		efficiency of sows

^{*}Feedstuffs Reference Issue (1987)

Table 1. Maximum Tolerable Level of Mycotoxins Commonly Found in Swine Feeds as Established by US Food and Drug Administration

4			
	Mycotoxin	Class	Maximum Tolerable Level
	Aflatoxins (B1, B2, G1, G2)	Breeding	100 ppb
		Nursery	200 ppb
		Growing	Not Determined
		Finishing	20 ppm
	Zearalenone	Breeding	2 ppm
		Nursery	1 ppm
		Growing	1 ppm
		Finishing	3 ppm
	Deoxynivalenol (vomitoxin)	All Classes	1 ppm
	Fumonisin	All classes	10 ppm



What does the corn you are feeding looking like in the field?

Cleaning Corn to reduce Mycotoxin Content: NHF 9-4-17

Information about Mycotoxins

- A minimum of 300+ mycotoxins have been shown to induce toxicity in animals
- Thousands of secondary toxins have been identified but few tested for toxicity
- Testing options:
 - -Alltech 37+ program: analyzes 38 mycotoxins
 - -on farm quick test: Alltech RAPIDREAD
 - -Kemin: does 5 main mycotoxins
 - -commercial labs: test for mycotoxins but charge by individual
- Treatment options:
 - -Vomitoxin: hard to bind
 - -products: sodium metabisulfite
 - Defusion from Provimi
 - Feed Aid from Nutriquest (can bind thiamine)
 - Biofix (BioMin)
 - Integral (Alltech)
 - -Aflatoxins: bound with inexpensive sodium bentonite, clays, sodium aluminosilicates but not effective against other toxins

What are some contact point for Mycotoxins??

What needs to be done to manage Mycotoxins??

- testing of corn and finished rations for mycotoxins before processing and after mixing
- testing other ingredients for mycotoxins: corn, DDG's, soybean meal, etc
- monitoring feed storage bins on farm:
 - using double bins to allow for completely emptying bin
 - physical inspection of inside of bins weekly with flashlight and clean if needed (power wash bins)
- adding binders to rations based on mycotoxins present, time of year and quality of ingredients
 - consider low levels year around for "insurance"

What needs to be done to manage Mycotoxins?? (cont.)

- seed corn selection for dropping ears: probably not going to happen
- harvesting: drying corn, cleaning corn before placing in bin
- corn storage bin management:
 - completely emptying bin before putting in new corn, clean any spots on walls or floors as needed
 - freeze corn by running bin fans on cold nights
 - stops toxin growth
 - keeps bugs out
 - don't need to warm back up as temperature goes back up

Soundness: Feet and leg issues?

Improving gilts selection looking at feet, toe, and leg structure

Chute for trimming Sow Toes and Dew Claw

What probably caused this uneven toe growth?

Trimming toes and Dew Claws With Fiskars 3x Trimmers (Home Depot)

Do the trimming in farrowing?

3 Fingers Width = Ideal toe length

Cut Dew Claws back to coronary band (where hair and toe meet)

Trimming sequence

Trimming Dew Claws With Trimmers

Trimming Completed

What do we see in the industry?

- less selection pressure on replacement gilts
- industry expansion putting pressure on availability of breeding stock
- farms seeing high employee turn over
- employee training-lack of training and SOP's
- facility changes to more loose sow housing
- floor design in gestation barns needing research
- lack of spaces in farms for injured animals-soft laying mats
- not understanding financial impact of sows deaths and injuries

How to lower female death loss & culling?

- PQA certification employees
- training staff to identify, mark and treat sick / lame females
- have a way to identify females needing treatment in sows housing area and keep detailed records (red card)
- make sure there are written SOP's on how to handle and treat sick and lame females
- work with your farm veterinary to develop a written list that can posted on how to treat sick and lame females with along with withdraw times
- record detailed information on each treated female and keep for 12 months (PQA requirement)
- have a shorter detailed list of reasons for female deaths and culling reasons
- get all females up everyday

How to lower female death loss & culling? (cont)

- if females are to be euthanized ensure proper training procedures and record <u>primary death reason</u>
- best time to check farms with crate gestation is after feed is dropped
- with pen gestation farm needs a trained pen walker: daily observation of each sow and marking and treating as needed
- **■** take temperature of sows after farrowing
- **■** improve feet care through
 - nutrition evaluation
 - gilt selection
 - feet maintenance by trimming toes
- **■** increase testing of ingredients for molds and mycotoxins
 - add binders to feed if needed

What are the plans at your farm to lower female death loss and culling?

Thank you for your time.

"information solutions"

Swine Management Services, LLC

1044 W. 23rd St. - Suite B

Fremont, NE 68025

Tel: (402) 727-6600

Website: www.swinems.com

E-mail: Ron.Ketchem@swinems.com

E-mail: Mark.Rix@swinems.com

E-mail: Valerie.Duttlinger@swinems.com

